Ergodicity and quantum correlations in irrational polygonal billiards

T. Araújo Lima¹, R. B. do Carmo², K. Terto³, F. M. de Aguiar³

¹Departamento de Física, Universidade Federal Rural de Pernambuco, Recife, PE, ²Laboratório de Física, Instituto Federal de Alagoas, Piranhas, AL, ³Departamento de Física, Universidade Federal de Pernambuco, Recife, PE

The present work consists of a numerical study of the dynamics of irrational polygonal billiards. Specifically triangular and symmetrical shapes. Our contribution reinforces the hypothesis that these systems can be strongly mixing, although never demonstrably chaotic [1]. The absolute value of the position correlation function $\operatorname{Cor}_{\tau}(t)$ decays like $\sim t^{-\sigma}$. Fast ($\sigma \simeq 1$) and slow ($0 < \sigma < 1$) decays are observed, thus indicating that the irrational polygons do not share a unique ergodic dynamics, which, instead, may vary smoothly between the opposite limits of strong mixing ($\sigma = 1$) and regular behaviors $(\sigma = 0)$ [2]. Spectral statistical properties of the quantized counterparts are computed from hundreds of thousands eigenvalues numerically calculated for each billiard. Gaussian Orthogonal (Unitary) Ensemble spectral fluctuations are observed when $\sigma \simeq 1$ for singlets (doublets) states. Intermediate statistics are found otherwise. For $0 < \sigma < 1$, formulas for intermediate quantum statistics have been derived for the doublets [2]. We also discuss the role of rotational C_n symmetries on the polygonal boundaries [3]. For odd, small values of n, the exponent $\sigma \simeq 1$ is found. On the other hand, $\sigma < 1$ (weakly mixing cases) for small, even values of n. Intermediate n values present $\sigma \simeq 1$ independently of parity. For larger values of symmetry parameter n, the biparametric family tends to be a circular billiard (integrable case). For such values of n, we identified even less ergodic behavior at the pace at which *n* increases and σ decreases [3].

References

[1] G. Casati and T. Prosen, Mixing property of triangular billiards, Phys. Rev. Lett. 83, 4729 (1999).

[2] T. Araújo Lima, R. B. do Carmo, K. Terto, and F. M. de Aguiar, Time-reversal-invariant hexagonal billiards with a point symmetry, Phys. Rev. E. **104**, 064211 (2021).

[3] R. B. do Carmo and T. Araújo Lima, Mixing property of symmetrical polygonal billiards, Phys. Rev. E **109**, 014224 (2024).

Type

ORAL